In other words, energy and mass are equivalent, as Einstein proposed in his Special Theory of Relativity in 1905.
The e=mc2 formula shows that mass can be converted into energy, and energy can be converted into mass.
By showing how much energy would be released if a certain amount of mass were to be converted into energy, the equation has been used many times, most famously as the inspirational basis for building atomic weapons.
But resolving e-mc2 at the scale of sub-atomic particles -- in equations called quantum chromodynamics -- has been fiendishly difficult.
"Until now, this has been a hypothesis," France's National Centre for Scientific Research (CNRS) said proudly in a press release.
"It has now been corroborated for the first time."
For those keen to know more: the computations involve "envisioning space and time as part of a four-dimensional crystal lattice, with discrete points spaced along columns and rows." .
Monday, February 9, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment